EM^A

CHEMICAL MANUFACTURERS ASSOCIATION

8EHQ - 0498- 14159

COURTNEY M. PRICE VICE PRESIDENT CHEMSTAR

April 8, 1998

VIA CERTIFIED MAIL

Document Processing Center
Mail Code 7407
Room E-G99 East Tower
Office of Pollution Prevention and Toxics
Environmental Protection Agency
401 M Street, S.W.
Washington, D.C. 20460

Attention: TSCA § 8(e) Coordinator

Dear Sir:

Contains No Col

ocnu-98-14159

38980000126

The Vinyl Chloride Health Committee of the Chemical Manufacturers Association submits the enclosed preliminary results from an ongoing inhalation two-generation reproductive toxicity study in Charles River CD rats sponsored by the Health Committee. These results are submitted pursuant to § 8(e) of the Toxic Substances Control Act.

As indicated in the enclosed preliminary macroscopic and microscopic pathology report, microscopic changes were seen in the livers of high-dose (1,100 parts per million (ppm)) parental rats of both generations. Hepatocellular hypertrophy was seen in the liver of all high-dose rats, and foci of cellular alteration in hepatocytes were significantly increased in the livers of P2 generation parental rats. An increased incidence of hepatocellular foci was seen in 18 of 30 high-dose males and 19 of 30 high-dose females. One focus of cellular alteration was seen in male controls; none was observed in females.

These effects are largely corroborative of results previously reported. Til, H.P. et al. observed a variety of treatment-related liver lesions in the high-dose (1.3 mg/kg body weight/day) group of Wistar rats tested in a lifetime oral carcinogenicity study of vinyl chloride. Food Chem. Toxicol. 29: 713-18 (1991). The lesions included increased incidences of liver cell polymorphism, hepatic cysts, foci of cellular alteration, neoplastic nodules, hepatocellular carcinomas, and angiosarcomas.

Responsible Care*
A Public Commitment

An earlier study of the age-dependence of the induction of pre-neoplastic enzyme-altered hepatic foci demonstrated that there is a period of increased sensitivity to the production of liver foci in response to vinyl chloride exposure in newborn rats. Lai R.L. et al., Carcinogenesis 6: 65-68 (1985). This is consistent with the observation of hepatic foci induction in the P2, but not the P1, rats in the reproductive toxicity study. The P2 rats would presumably have been exposed to vinyl chloride during the lactation period (days 4-25 after birth), whereas the P1 animals would not. The period of sensitivity appears to correspond with the period of rapid increase in the number of cells of the liver (proliferation) in newborn rats.

Any significant supplemental data obtained as a result of further pathology evaluation will be reported in a follow-up communication.

The member companies of the CMA Vinyl Chloride Health Committee on whose behalf this submission is being made include:

Borden Chemicals and Plastics 180 E. Broad Street, 15th Fl. Columbus, OH 43215

Panel Contact: Mr. Mark

Gruenwald

Telephone: (614) 225-3459

The Dow Chemical Company 1803 Dow Center Midland, MI 48674 Panel Contact: Dr. Colin Park Telephone: (517) 636-1159

GEON Company One Geon Center Avon Lake, OH 44012 Panel Contact: Mr. Ed Beeler Telephone: (440) 930-3030 CONDEA Vista Company
900 Threadneedle
P.O. Box 19029
Houston, TX 77079
Panel Contact: Dr. David A. Penney

Telephone: (281) 588-3059

Formosa Plastics 9 Peachtree Hill Rd. Livingston, NJ 07039 Panel Contact: Mr. David Pun Telephone: (973) 716-7279

Georgia Gulf Corporation 26100 Highway 405 P.O. Box 629 Plaquemine, LA 10165 Panel Contact: Mr. Jay Strange Telephone: (504) 685-2642 **Document Processing Center** April 8, 1998 Page 3

> Occidental Chemical Corp. P.O. Box 809050 5005 LBJ Freeway, Room 904 Dallas, TX 75380

Panel Contact: Dr. Steve Phillips

Telephone: (972) 404-2413

PPG Industries, Inc. One PPG Place - 36W Pittsburgh, PA 15272 Panel Contact: Dr. James Barter Telephone: (412) 434-2801

Westlake Chemical Corp. 2801 Post Oak Blvd. Suite 600 Houston, TX 77056 Panel Contact: Mr. John Gamble

Telephone: (713) 960-9111

If you have any questions regarding this letter, please contact Wendy Sherman of my staff at (703) 741-5639.

Sincerely yours,

Courtney M. Price

Vice President, CHEMSTAR

Enclosure

cc: Vinyl Chloride Health Committee S8 APR - 9 PM 3: 34

Ms Wendy Sherman Chemical Manufacturers Association Chemstar Department 1300 Wilson Boulevard Arlington, VA 22209

20 March 1998

RE: Huntingdon Life Sciences Study No. 98-4080; Vinyl Chloride Combined Inhalation Two-Generation Reproduction and Developmental Toxicity Study in CD Rats: Preliminary Macroscopic and Microscopic Pathology Report and Organ Weight Data P1 and P2 parental animals.

Dear Wendy,

Attached for review are the following summary data for the referenced study.

1) Preliminary Macroscopic and Microscopic Pathology Report (2 pages);

2) Appendix M, Terminal Organ and Body Weights, Organ/Body Weight and Organ/Brain Weight Ratios - P1 and P2 Parental Generations (22 pages).

These organ weight data (Appendix M) have not been audited by our Quality Assurance Unit but they have been reviewed and I would not expect these values to change significantly following an audit. If you have any comments or questions concerning the enclosed or if you require additional information, please let me know.

Best Regards

Raymond E. Schroeder, M.S., D.A.B.T.

Study Director

Enclosures

cc: Dr. Dave Penny

Page 1

96-4080: VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

Preliminary Macroscopic and Microscopic Pathology Report

1. INTRODUCTION

This study was conducted as a combined inhalation two-generation reproduction and developmental toxicity study in rats with vinyl chloride. The purposes of this study were to evaluate effects of the test material on parental toxicity, reproductive capacity, in utero development, and neonatal growth and survival in rats.

A limited microscopic pathology evaluation (Protocol Appendix A - approximately 15-18 tissues/animal) was performed on all P1 and P2 animals in the control and high-dose group (1100 ppm). Additionally, a detailed examination of the turbinates and upper respiratory tract (four levels) was performed on all animals scheduled for microscopic evaluation.

2. GROSS PATHOLOGY

None of the macroscopic observations in the P1 and P2 parental animals were judged related to treatment with the test material. Incidental or spontaneous findings occurred sporadically in rats from the control and treated groups and have been seen in Charles River CD rats of similar age used in other studies conducted in this facility.

3. MICROSCOPIC PATHOLOGY

Microscopic test article-related changes were seen in the livers of high-dose parental rats of both generations. Hepatocellular hypertrophy was seen in the liver of all high dose rats; also foci of cellular alteration in hepatocytes were greatly increased in the livers of P2 generation parental rats.

An increased incidence of foci of cellular alteration in hepatocytes was seen in the high-dose P2 parental rats only. These lesions were coded as "acidophilic focus", "basophilic focus", or "clear cell focus" and were considered together for purposes of evaluation. Lesion classification was based primarily on the tinctorial properties of the affected cells. Affected cells may be smaller or larger than normal and are distinct from surrounding hepatocytes based on the staining characteristics with H&E stains. A few of these lesions contained rare mitotic figures and there was a clear demarcation from the surrounding tissue. There was a general absence of cellular atypia in these lesions. The foci identified in these animals were usually solitary in occurrence i.e. Only one focus was identified in the liver for each rat examined. However, a few rats had several foci of cellular alteration present in the two sections of liver tissue examined. These hepatic foci are considered to be proliferative in nature and may be considered an adverse finding depending on the type of study in which they are seen.

Generally, increased incidences of hepatocellular alteration are seen in aged, untreated rats of this strain fed ad libitum. However, an incidence exceeding 50% in young animals as seen in this study, is clearly indicative of a test-article-related effect.

The following histomorphologic criteria were used in classifying the foci of cellular alteration:

Acidophilic Focus- cells moderately to greatly enlarged with increased amounts of cytoplasm; cytoplasm pale and eosinophilic.

Basophilic Focus- cells usually enlarged to a slight or moderate degree; cytoplasm stains diffusely and homogeneously basophilic.

Clear Cell Focus- cells may be slightly to greatly enlarged; cytoplasm appears empty and unstained.

The incidences of hepatocellular foci and hepatocellular hypertrophy are presented in the following table:

Selected Microscopic	Findi	ngs ir	the I	Liver					
Generation P1 P2									
Sex	Males Females				M	ales	Females		
Group	I	IV	I	IV	I	IV	Ī	IV	
Number of Animals Examined	30	30	30	30	30	30	30	30	
Acidophilic Focus	0	1	0	0	1	5	0	8	
Basophilic Focus	0	li	Ö	0	0	8	0	11	
Clear Cell Focus	0	0	0	0	0	5	0	0	
Total	0	2	0	0	1	18	0	19	
Hepatocellular Hypertrophy (Centrilobular)	0	30	0	30	0	30	0	30	

Hepatocellular hypertrophy was seen in the livers of all treated rats in both generations. The hepatocytes were enlarged with increased acidophilic cytoplasm in the centrilobular areas of the lobule. This observation correlates with the increased liver weights seen in the high-dose animals in this experiment and is generally considered to represent an adaptive change by the hepatocytes.

Other findings occurred with comparable incidence or severity or they occurred sporadically in rats from the control and high-dose groups. These incidental findings were not considered to be related to the test material and have been seen in rats of similar age and strain used in other studies conducted in this facility.

¹ Proliferative and selected other Lesions in the Liver of Rats. STP Guides for Toxicologic Pathology, Washington, DC STP/AFIP 1994.

96-4080

APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - MALES

	~~~~			AN VALUES -	•		
	TERMINAL BODY WT. (G)	WT.	BRAIN ORG/TBW (X 1000)	ORG/BRN (X 1)	WT.	ADRENALS ORG/TBW (X 10000)	ORG/BRN (X 100)
GROUP	I - O PPM	,					
	504.9 40.2 15	2.251 .113 15		.00	.0684 .0120 15	.24	
GROUP	II - 10 PP	PM To The Market				A.	
	530.7 46.3 15	2.223 .066 15			.0707 .0106 15	.20	
GROUP	III - 100	PPM					
	524.0 22.9 15	2.256 .108 15		1.00 .00 15	.0704 .0143 15		
GROUP	IV - 1100	PPM					
	514.8 35.7 15	2.229 .097 15	4.34 .23 15		.0704 .0102 15		3.16 .45 15

96-4080

## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

#### TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - MALES

				AN VALUES			
	TERMINAL	100	KIDNEYS	606 (DDN		LIVER	
	BODY WT.	WT. (G)	(X 1000)	ORG/BRN (X 1)	(G)	ORG/TBW (X 100)	ORG/BRN (X 1)
GROUP	I - O PPM						
MEAN	504.9	4.148	8.24	1.85	14.324	2.83	6.38
S.D.	40.2	.304			2.134		1.07
N	15	15	15	15	15	15	15
GROUP	II - 10 PP	M		• •			
MEAN	530.7	4.301	8.12	1.94	16.201	3.05	7.30
	46.3	.456			2.193		1.02
N	15	15	15	15	15	15	15
GROUP	III - 100 I	PPM					
MEAN	524.0	4.468	8.53	1.99	* 16 216	*	7 20
	22.9	. 285		.17	1.586		7.20 .74
N	15	15	15	15	1.555	15	15
GROUP	IV - 1100 I	PPM		•			
MEAN	514.8	4.311	8.39	1 02	**	**	**
S.D.	35.7	.303		1.93 .10	16.718 .857	3.26 .19	7.51
N	15	15	15	15	15	15	.38 15
							10

^{*,**}Statistically different from control mean;  $p \le 0.05$ ,  $p \le 0.01$ .

96-4080

## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - MALES

				AN VALUES			
	TERMINAL		LUNGS			PROSTATE	
	BODY WT.	WT.	ORG/TBW	ORG/BRN	WT.	ORG/TBW	ORG/BRN
	(G)	(G)	(X 1000)	(X 10)	(G)	(X . 1000)	(X 10)
				+			
GROUP	I - O PPM						
MEAN	E04 0	1 000	2.00	0.10	000	1 70	
S.D.	504.9 40.2	1.828 .183			.899 .173		
N.	15	15	15		15		15
			•				20
GROUP	II - 10 PP	M				A	
MFAN	530.7	1.883	3 55	8.46	1.005	1.90	4.51
	46.3	.208			.259		1.12
N	15	15	15		15		15
		D.D.1.4					
GROUP	III - 100	PPM					
MEAN	524.0	1.884	3.60	8.37	1.051	2.01	4.66
	22.9	.122			.278		1.22
N	15	15	15	15	15	15	15
CPOLID	IV - 1100	DOM					
GROUP	14 - 1100	rrn					
	514.8	1.924	3.75	8.65	1.011	1.96	4.54
S.D.		.159			.264	.48	
N	15	15	15	15	15	15	15

96-4080

## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - MALES

			ME	AN VALUES			
	TERMINAL		SEMIN VES	I		SPLEEN	
	BODY WT.			ORG/BRN			
	(G)	(G)	(X 1000)	(X 1)	(G) (	X 1000)	(X 10)
GROUP	I - O PPM						
MEAN	504.9	2.3527	4.72	1.05	.824	1.63	3.67
		.5185			.113		.56
N .	15	15	15	15	15	15	15
000110	77 10 00						•
GROUP	II - 10 PP	'M					
MEAN	530.7	2.2269	4.24	1.00	.804	1.52	3.62
		.4496					
N	15	15			15	15	15
GROUP	III - 100	PPM					
MEAN	524.0	2 3967	4.60	1.06	863	1 65	3.83
		.4629		.21	.100		
N	15	15			15	15	15
							•
GROUP	IV - 1100	PPM.	•				
MEAN	514.8	2.3444	4.55	1.05	.892	1.73	4.00
		.4376		.19	.140		
N	15	15	15	15	15	15	15

96-4080

## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - MALES

	TERMINAL BODY WT. (G)	WT.	PIDIDYMID ORG/TBW	ORG/BRN		TESTES ORG/TBW (X 1000)	
GROUP	I - O PPM						
MEAN S.D. N	504.9 40.2 15	.7034 .0571 15	1.40 .16 15	3.13 .23 15	3.461 .241 15		
GROUP	II - 10 PP	M			t.	A	
MEAN S.D. N	530.7 46.3 15	.7564 .0998 15		3.40 .44 15	3.535 .489 15		1.59 .22 15
GROUP	III - 100	PPM			•		
	524.0 22.9 15	.7791 .0704 15	1.49 .14 15	3.46 .32 15	3.617 .201 15	6.92 .57 15	1.61 .13 15
GROUP	IV - 1100 I	PPM _.					
MEAN S.D. N	514.8 35.7 15	.7596 .0801 15	1.48 .15 15	3.41 .38 15	3.479 .386 15	6.80 .90 15	. 1.56 .18 15

^{*}Statistically different from control mean;  $p \le 0.05$ .

96-4080

## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

TERMINAL ORGAN AND BODY WEIGHTS,
ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS
TERMINAL SACRIFICE - P1 GENERATION - MALES

	TERMINAL			N VALUES
	TERMINAL BODY WT. (G)	WT.	THYMUS ORG/TBW (X 10000)	ORG/BRN (X 10)
GROUP	I - O PPM			
MEAN	504.9	. 265		1.17
	40.2		1.13	.28
N	15	15	15	15
GROUP	II - 10 P	PM		
MEAN	530.7	.276	5.19	1.24
S.D.	530.7 46.3	.073	1.29	.33
N	15	15	15	15
GROUP	III - 100	PPM		
MEAN	524.0	.292	5.57	1.30
S.D.	22.9	.072		.35
N	15	15	15	15
GROUP	IV - 1100	PPM		
MEAN	514.8	.294	5.76	1.33
S.D.	35.7	.047	1.12	.24
	. 15	15	15	15



## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - FEMALES

		MEAN VALUES							
		TERMINAL BODY WT. (G)			ORG/BRN (X 1)			ORG/BRN	
	GROUP	I - O PPM							
	MEAN S.D. N	291.6 12.4 15	2.103 .103 15	.39		.0701 .0086 15		.46	
	GROUP	II - 10 PP	М				Ä		
	MEAN S.D. N		2.074 .079 15	.43					
	GROUP	III - 100	PPM						
		288.5 19.6 15	2.028 .057 15	.42	1.00 .00 15	.0738 .0103 15		3.64 .53 15	
-	GROUP	IV - 1100	PPM						
	MEAN S.D. N	281.8 17.8 14	2.069 .101 15	.57	1.00 .00 15	.0689 .0094 15			

96-4080

# APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

# TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - FEMALES

				AN VALUES			
	TERMINAL BODY WT. (G)	WT.	KIDNEYS ORG/TBW (X 1000)	ORG/BRN (X 1)	WT.	LIVER ORG/TBW (X 100)	ORG/BRN (X 1)
GROUP	I - O PPM	•					
MEAN	291.6	2.542	8.71	1.21	9.625	3.31	4.58
S.D. N	12.4 15	.277 15	.79 15	.12 15	.876	.32 15	.42 15
GROUP	II - 10 P	PM .					
				1.21			
S.D. N	17.7 15	.247	.91 15	.13 15	.966 15	15	.50 15
GROUP	III - 100	PPM					
MEAN	288.5	2.585	8.97	1.28	9.800	3.40	4.83
S.D. N	19.6 15	.269 15	.84 15	.14 15	1.103 15	.30 15	.48 15
GROUP	IV - 1100	PPM					
MEAN				1.25			
	17.8 14	.253 15	.70 14	.13 15			
		.253	.70	.13		.31	.60

96-4080

## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

#### TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - FEMALES

				AN VALUES	•		
	TERMINAL		LUNGS .			OVARIES	
	BODY WT.			ORG/BRN		ORG/TBW	
	(G)	(G)	(X 1000)	(X 10)	(G)	(X 10000)	(X 100)
	****						
GROUP	I - 0 PPM	•					
MEAN	291.6	1.426	4.90	6.82	.1042	3.57	4.97
S.D.	12.4	.107	.30		.0145		.74
N	15	14	14	14	15	15	15
000110							
GROUP	II - 10 PF	'M			,		
MEAN	286.8	1.451	5.07	7.01	.1081	3.78	5.23
	17.7	.144			.0244		
N	15	15	15	15	15	15	15
•						,	
GROUP	III - 100	PPM					
MEAN	288.5	1.402	4.87	6.92	.1025	3.55	5.06
	19.6	.093	.24		.0194		
N	15	15	15	15	15	15	15
GROUP	IV - 1100	PPM					
MEAN	281.8	1.434	5.09	6.95	.1091	3.88	5.28
S.D.		.157	.41	.85	.0166		.78
N	14	15	14	15	15	14	15



## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - FEMALES

			AN VALUES	_			
	TERMINAL BODY WT. (G)	WT. OF		ORG/BRN (X 10)		THYMUS ORG/TBW X 10000)	
GROUP	I - O PPM						
MEAN		.569		2.71	.234		
S.D. N	12.4 15	.095 15	.26 15	.48 15	.063 15	2.19 15	.30 15
CDOUD	TT 10.00	MA					
GROUP	II - 10 PP	'M **	**	**		- A	
	286.8	.713	2.50	3.45	.236	8.21	1.14
	17.7		. 46		.055		
N	15	15	15	15	15	15	15
GROUP	III - 100	PPM			•		
MEAN	288.5	.633	2.19	3.13	.291	10.18	1.44
	19.6	.187		.93		4.65	
N	15	15	15	15	15	15	15
GROUP	IV - 1100	PPM					•
MEAN	281.8	.598	2.15	2.89	.233	8.31	1.13
S.D.	17.8		.22	.31	.060	2.11	.30
N.	14	15	14	15	15	14	15

^{**}Statistically different from control mean;  $p\leq 0.01$ .



## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P1 GENERATION - FEMALES

	TERMINAL			AN VALUES
	BODY WT.	WT.	UTERUS ORG/TBW (X 1000)	ORG/BRN (X 10)
		•••••		
GROUP	I - O PPM			
MEAN S.D. N	291.6 12.4 15	.644 .179 15	.57	
GROUP	II - 10 PP	M		
MEAN S.D. N	286.8 17.7 15	.692 .118 15	.47	
GROUP	III - 100	PPM		
MEAN S.D. N	288.5 19.6 15	.667 .155 15	.47	
GROUP	IV - 1100	PPM		
MEAN S.D. N	281.8 17.8 14	.637 .095 15		3.09 .49 15



## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

# TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - MALES

			ME	AN VALUES			
	TERMINAL		BRAIN	(		ADRENALS	
	BODY WT.	WT.	ORG/TBW	ORG/BRN	WI.	ORG/IBW	ORG/BRN
	(G)	(6)	(X 1000)	(X 1)	(6)	(X 10000)	(X 100)
GROUP	I - O PPM					•	
MEAN	472.4	2.156	4.59	1.00	.0637	1.36	2.97
	46.3	.119		.00	.0161	.35	
N	15	15	15	15	15	15	. 15
GROUP	II - 10 PF	PM				A.	
MEAN	499.0	2.241	4.56	1.00			
S.D.	71.3	.107			.0163		
N	15	15	15	15	14	14	14
GROUP	III - 100	PPM					
MEAN	500.0	2.208	4.44	1.00	.0633	1.27	2.86
S.D.	39.5	.084			.0094	.19	
N	15	15	15	15	15	15	15
GROUP	IV - 1100	PPM					
MEAN	503.6	2.203	4.39	1.00	.0684	1.37	3.13
S.D.		.124				.24	
N	15	15	15	15	14	14	14

# APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - MALES

				AN VALUES			
	TERMINAL		KIDNEYS			LIVER	000 (00)
	BODY WT.	WT.	ORG/TBW	ORG/BRN	W1.	ORG/ IBW	ORG/BRN
	(G)	(6)	(X 1000)	(X 1)	(G)	(x 100)	(^ .1)
GROUP	I - 0 PPM					•	
MEAN	472.4	3.912	8.29	1.81	14.133	2.98	6.55
S.D.	46.3	.444	.52	.18	2.363	.33	.99
N	15	15	15	15	15	- 15	15
GROUP	II - 10 P	PM				e.	
MEAN	499.0	4.253	8.54	1.89	15.072	3.01	6.70
S.D.	71.3			.22		.19	
N	15	15	15	15	15	15	15
GROUP	III - 100	PPM					
MFAN	500 0	4 249	8.51	1.93	* 16.619		
		.453			2.265		
N	15	15		15	15	15	15
GROUP	IV - 1100	PPM			**	**	**
MEAN	503.6	4.236	8.42	1.93			
S.D.	31.8	.361			1.494		
N		15			15		

^{*,**}Statistically different from control mean;  $p \le 0.05$ ,  $p \le 0.01$ .



# APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - MALES

				N VALUES		DOCTATE	
	TERMINAL BODY WT. (G)	WT ·	LUNGS ORG/TBW X 1000)	ORG/BRN (X 10)	WT.	ROSTATE ORG/TBW X 1000)	ORG/BRN
GROUP	I - O PPM						
S.D.	472.4 46.3 15	.215	. 29	7.93 .85 15	. 239	.50	1.17
GROUP	II - 10 PI	PM				e.	
MEAN S.D. N	499.0 71.3 15	1.806 .258 15	.37		.251	.46	
GROUP	III - 100	PPM					
MEAN S.D. N	500.0 39.5 15	1.844 .200 15	3.70 .38 15	8.35 .86 15	.856 .248 15	.51	3.89 1.20 15
GROUP	IV - 1100	PPM					
MEAN S.D. N	503.6 31.8 15		.40	8.44 1.12 15		1.77 .41 15	1.11

# APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

# TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - MALES

		ME/	N VALUES			
TERMINAL	S	EMIN VEST	·	SP	LEEN	
BODY WT.	WT.	ORG/TBW	ORG/BRN	WT. OR	G/TBW	ORG/BRN
(G)	(G) (	X 1000)	(X 1)	(G) (X	1000)	(X 10)
I - O PPM						
472.4	2.3964	5.11	1.11	.761	1.61	3.53
				.140	.24	.60
15	15	15		15	15	15
II - 10 PF	PM			٠.	÷ .	
499.0	2.2789	4.57	1.01	. 789	1.58	3.52
71.3	.5992	1.13	.25	.204	.33	.88
				15	15	15
III - 100	PPM					
500.0	2.3378	4.70	1.06	.901	1.79	4.08
					.31	.90
	15			15		
IV - 1100	PPM					*
503.6	2.0940	4.14	. 95			
			.23	.246		
			15	15		
	BODY WT. (G) I - 0 PPM 472.4 46.3 15 II - 10 PF 499.0 71.3 15 III - 100 500.0 39.5 15 IV - 1100 503.6 31.8	BODY WT. WT. (G) (G) (C) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G	TERMINAL SEMIN VEST BODY WT. WT. ORG/TBW (G) (G) (X 1000)  I - 0 PPM  472.4 2.3964 5.11 46.3 .3250 .82 15 15 15  II - 10 PPM  499.0 2.2789 4.57 71.3 .5992 1.13 15 15  III - 100 PPM  500.0 2.3378 4.70 39.5 .4271 .88 15 15 15  IV - 1100 PPM  503.6 2.0940 4.14 31.8 .5071 .90	(G) (G) (X 1000) (X 1)  I - 0 PPM  472.4 2.3964 5.11 1.11 46.3 .3250 .82 .15 15 15 15 15  II - 10 PPM  499.0 2.2789 4.57 1.01 71.3 .5992 1.13 .25 15 15 15 15  III - 100 PPM  500.0 2.3378 4.70 1.06 39.5 .4271 .88 .21 15 15 15  IV - 1100 PPM  503.6 2.0940 4.14 .95 31.8 .5071 .90 .23	TERMINAL SEMIN VESI SP BODY WT. WT. ORG/TBW ORG/BRN WT. OR (G) (G) (X 1000) (X 1) (G) (X  I - 0 PPM  472.4 2.3964 5.11 1.11 .761 46.3 .3250 .82 .15 .140 15 15 15 15 15  II - 10 PPM  499.0 2.2789 4.57 1.01 .789 71.3 .5992 1.13 .25 .204 15 15 15 15 15  III - 100 PPM  500.0 2.3378 4.70 1.06 .901 39.5 .4271 .88 .21 .209 15 15 15 15 15  IV - 1100 PPM  503.6 2.0940 4.14 .95 .987 31.8 .5071 .90 .23 .246	TERMINAL SEMIN VESI SPLEEN BODY WT. WT. ORG/TBW ORG/BRN WT. ORG/TBW (G) (G) (X 1000) (X 1) (G) (X 1000)  I - 0 PPM  472.4 2.3964 5.11 1.11 .761 1.61 46.3 .3250 .82 .15 140 .24 15 15 15 15 15 15 15 15 15 15 15 15 15

^{*}Statistically different from control mean;  $p\leq 0.05$ .

## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

# TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - MALES

	TERMINAL BODY WT. (G)	R. EPI WT. OF (G) (X	DIDYMID	VALUES DRG/BRN ( 10)	WT. OF	TESTES RG/TBW 1000) (	ORG/BRN (X 1)
GROUP	I - O PPM						
	472.4 46.3 15			3.30 .53 15	3.282 .529 15	6.98 1.17 15	. 26
GROUP	II - 10 P	PM				A.	
_	499.0 71.3 15		1.50 .26 15	3.28 .36 15	3.413 .272 15	6.93 .83 15	1.52 .11 15
GROUP	III - 100	PPM					
MEAN S.D. N	500.0 39.5 15	.7055 .0619 15	1.42 .14 15	3.20 .30 15	3.464 .366 15	6.95 .78 15	1.57 .19 15
GROUP	IV - 1100	PPM					•
MEAN S.D. N	503.6 31.8 15	.6862 .1186 15	1.37 .25 15	.60	3.299 .540 15	6.57 1.15 15	



## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - MALES

	T5044144			N VALUES
	TERMINAL BODY WT. (G)	WT. C	THYMUS ORG/TBW ( 10000)	ORG/BRN (X 10)
GROUP	I - O PPM			
MEAN S.D. N	472.4 46.3 15	.247 .045 15	5.28 1.08 15	.23
GROUP	II - 10 P	PM		
	499.0 71.3 15		5.97 1.50 15	
GROUP	III - 100	PPM	•	
MEAN S.D. N	500.0 39.5 15	.268 .062 15		
GROUP	IV - 1100	PPM		_
	503.6 31.8 15	.302 .113 15		1.37 .54 15



# APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

# TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - FEMALES

	1		ME/	AN VALUES			
	TERMINAL		BRAIN			ADRENALS	000 (00)
	BODY WT.			ORG/BRN	WT.	ORG/TBW	
	(G)	(G)	(X 1000)	(X 1)	(G) (	(X 10000)	(X 100)
				,			
GROUP	I - 0 PPM						
MEAN	274.1	2.067	7.66	1.00	.0716	2.65	3.47
S.D.	32.2	.106			.0103		.48
N	15	15	15	15	15	15	15
GROUP	II - 10 P	PM				A.	
MEAN	283.9	2.061	7.27	1.00	.0719	2.54	3.51
S.D.	14.4	.119			.0122		.66
N	15	15	15	15	15	15	15
GROUP	III - 100	PPM					
MEAN	286.0	2.008	7.04	1.00	.0736	2.57	3.68
S.D.	25.2	.174	. 52		.0132	.38	
N	15	15	15	15	15	15	15
GROUP	IV - 1100	PPM					
MEAN	279.7	2.010	7.23	1.00	.0736	2.64	3.66
S.D.	30.2	.144	.54	.00	.0082	.19	.36
N	15	15	15	15	15	15	15



# APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

#### TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - FEMALES

TERMINAL KIDNEYS LIVER BODY WT. WT. ORG/TBW ORG/BRN WT. ORG/TBW ORG/BRN (G) (G) (X 1000) (X 1) (G) (X 100) (X 1  GROUP I - 0 PPM	
	,
GROUP I - 0 PPM	)
GROUP I - 0 PPM	_
GROUP I - 0 PPM	
MEAN 274 1 2 426 0 22 1 10 0 500 2 54 4 55	
MEAN 274.1 2.426 8.92 1.18 9.589 3.54 4.65 S.D. 32.2 .272 1.17 .14 1.433 .66 .71	
N 15 15 15 15 15 15 15 15	
N 15 15 15 15 15	
GROUP II - 10 PPM	
MEAN 283.9 2.446 8.62 1.19 9.545 3.37 4.65	
S.D. 14.4 .181 .62 .09 1.117 .42 .63	
N 15 15 15 15 15 15	
GROUP III - 100 PPM	
aroof 111 - 100 ffff	
MEAN 286.0 2.528 8.86 1.26 10.249 3.60 5.13	
S.D. 25.2 .246 .70 .09 1.285 .45 .64	
N 15 15 15 15 15 15	
GROUP IV - 1100 PPM	
MEAN 279.7 2.458 8.83 1.23 10.422 3.74 5.20	
S.D. 30.2 .254 .74 .13 1.108 .38 .62	
N 15 15 15 15 15 15	



## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - FEMALES

	TERMINAL BODY WT. (G)	WT. O	LUNGS RG/TBW	ORG/BRN (X 10)	WT. (G)	OVARIES ORG/TBW (X 10000)	
GROUP	I - O PPM						
	274.1 32.2 15	1.310 .117 .14		6.28 .43 14	.1077 .0226 15	.99	
GROUP	II - 10 PP	PM:					
	283.9 14.4 15	1.369 .113 15		6.65 .55 15	.0967 .0216 15	3.40 .73 15	
GROUP	III - 100	PPM					
	286.0 25.2 15	1.357 .180 15	4.74 .38 15	6.77 .72 15	.1019 .0211 15	3.57 .73 15	
GROUP	IV - 1100	PPM					
MEAN S.D. N	279.7 30.2 15	1.367 .118 15	4.93 .56 15	6.82 .60 15	.1009 .0268 15	3.62 .87 15	5.02 1.26 15



## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - FEMALES

TERMINAL BODY WT. WT. ORG/TBW ORG/BRN WT. ORG/TBW ORG/BRN (G) (G) (X 1000) (X 10) (G) (X 10000) (X 10)  GROUP I - 0 PPM  MEAN 274.1 .579 2.14 2.80 .249 9.16 1.22 S.D. 32.2 .126 .53 .60 .086 3.14 .47 N 15 15 15 15 15 15 15 15 15 15 15 15 15					AN VALUES			
GROUP I - 0 PPM  MEAN 274.1 .579 2.14 2.80 .249 9.16 1.22 S.D. 32.2 .126 .53 .60 .086 3.14 .47 N 15 15 15 15 15 15 15 15 15 15 15 15 15								
GROUP I - 0 PPM  MEAN 274.1			WT. 0	RG/TBW	ORG/BRN			
MEAN       274.1       .579       2.14       2.80       .249       9.16       1.22         S.D.       32.2       .126       .53       .60       .086       3.14       .47         N       15       15       15       15       15       15       15         GROUP II - 10 PPM         MEAN       283.9       .538       1.90       2.62       .217       7.67       1.06         S.D.       14.4       .072       .26       .42       .039       1.43       .19         N       15       15       15       15       15       15       15         GROUP III - 100 PPM         MEAN       286.0       .571       1.99       2.85       .265       9.33       1.34         S.D.       25.2       .091       .25       .40       .051       1.91       .33         N       15       15       15       15       15       15       15         GROUP IV - 1100 PPM         MEAN       279.7       .604       2.16       3.00       .235       8.43       1.16         S.D.       30.2       .076		(6)	(G) (X	1000)	(X 10)	(6)	(X 10000)	(X 10)
MEAN       274.1       .579       2.14       2.80       .249       9.16       1.22         S.D.       32.2       .126       .53       .60       .086       3.14       .47         N       15       15       15       15       15       15       15         GROUP II - 10 PPM         MEAN       283.9       .538       1.90       2.62       .217       7.67       1.06         S.D.       14.4       .072       .26       .42       .039       1.43       .19         N       15       15       15       15       15       15       15         GROUP III - 100 PPM         MEAN       286.0       .571       1.99       2.85       .265       9.33       1.34         S.D.       25.2       .091       .25       .40       .051       1.91       .33         N       15       15       15       15       15       15       15         GROUP IV - 1100 PPM         MEAN       279.7       .604       2.16       3.00       .235       8.43       1.16         S.D.       30.2       .076								
S.D. 32.2 .126 .53 .60 .086 3.14 .47 N 15 15 15 15 15 15 15 15 15 15 15 15 15	GROUP	I - 0 PPM						
S.D. 32.2 .126 .53 .60 .086 3.14 .47 N 15 15 15 15 15 15 15 15 15 15 15 15 15	MEAN	274.1	.579	2.14	2.80	.249	9.16	1.22
GROUP II - 10 PPM  MEAN 283.9						.086	3.14	.47
MEAN       283.9       .538       1.90       2.62       .217       7.67       1.06         S.D.       14.4       .072       .26       .42       .039       1.43       .19         N       15       15       15       15       15       15       15         GROUP III - 100 PPM         MEAN       286.0       .571       1.99       2.85       .265       9.33       1.34         S.D.       25.2       .091       .25       .40       .051       1.91       .33         N       15       15       15       15       15       15       15         GROUP IV - 1100 PPM         MEAN       279.7       .604       2.16       3.00       .235       8.43       1.16         S.D.       30.2       .076       .22       .30       .063       2.25       .28	N	15	15	15	15	15	15	15
S.D. 14.4 .072 .26 .42 .039 1.43 .19 N 15 15 15 15 15 15 15 15 15 15 15 15 15	GROUP	II - 10 PP	M				A STATE OF THE STA	
S.D. 14.4 .072 .26 .42 .039 1.43 .19 N 15 15 15 15 15 15 15 15 15 15 15 15 15	MEAN	283.9	.538	1.90	2.62	.217	7.67	1.06
N 15 15 15 15 15 15 15 15 15 15 15 15 15			.072					
MEAN 286.0 .571 1.99 2.85 .265 9.33 1.34 S.D. 25.2 .091 .25 .40 .051 1.91 .33 N 15 15 15 15 15 15 15 15 15 15 15 15 15	N	15	15	15	15	15	15	
S.D. 25.2 .091 .25 .40 .051 1.91 .33 N 15 15 15 15 15 15 15 15 15 15 GROUP IV - 1100 PPM  MEAN 279.7 .604 2.16 3.00 .235 8.43 1.16 S.D. 30.2 .076 .22 .30 .063 2.25 .28	GROUP	III - 100	PPM		•			
S.D. 25.2 .091 .25 .40 .051 1.91 .33 N 15 15 15 15 15 15 15 15 15 15 GROUP IV - 1100 PPM  MEAN 279.7 .604 2.16 3.00 .235 8.43 1.16 S.D. 30.2 .076 .22 .30 .063 2.25 .28	MEAN	286.0	.571	1.99	2.85	. 265	9.33	1.34
GROUP IV - 1100 PPM  MEAN 279.7 .604 2.16 3.00 .235 8.43 1.16 S.D. 30.2 .076 .22 .30 .063 2.25 .28								
MEAN 279.7 .604 2.16 3.00 .235 8.43 1.16 S.D. 30.2 .076 .22 .30 .063 2.25 .28	N	15	15	15	15	15	15	15
S.D. 30.2 .076 .22 .30 .063 2.25 .28	GROUP	IV - 1100	PPM					
S.D. 30.2 .076 .22 .30 .063 2.25 .28	MEAN	279.7	.604	2.16	3.00	.235	8.43	1.16
	S.D.	30.2	.076	.22				
	N	15	15	15	15	15	15	15



## APPENDIX M (CONT.) VINYL CHLORIDE COMBINED INHALATION TWO-GENERATION REPRODUCTION AND DEVELOPMENTAL TOXICITY STUDY IN CD RATS

## TERMINAL ORGAN AND BODY WEIGHTS, ORGAN/BODY WEIGHT AND ORGAN/BRAIN WEIGHT RATIOS TERMINAL SACRIFICE - P2 GENERATION - FEMALES

	TERMINAL			N VALUES
	BODY WT.	WT.	UTERUS ORG/TBW X 1000)	ORG/BRN (X 10)
GROUP	I - 0 PPM			
	274.1	.722	2.66	3.49
S.D. N	32.2 15	.177 15	.68 15	.81 15
GROUP	II - 10 PP	M		
MEAN	283.9	.727	2.56	
S.D. N	14.4 15	. 259 15	.92 15	1.27 15
GROUP	III - 100	PPM		
	286.0	.706		3.56
S.D. N	25.2 15	.164 15	.69 15	.93 15
GROUP	IV - 1100	PPM		
	279.7	. 687	2.47	3.41
S.D. N	30.2 15	.175 15	.64 15	.79 15